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We propose a three-species �A, B, and C� exchange-driven aggregate growth model with competition be-
tween catalyzed birth and catalyzed death. In the system, exchange-driven aggregation occurs between any two
aggregates of the same species with the size-dependent rate kernel Kn�k , j�=Knkj �n=1,2 ,3�, and, meanwhile,
monomer birth and death of species A occur under the catalysis of species B and C with the catalyzed birth and
catalyzed death rate kernels I�k , j�= Ikjv and J�k , j�=Jkjv, respectively. The kinetic behavior is investigated by
means of the mean-field rate equation approach. The form of the aggregate size distribution ak�t� of species A
is found to depend crucially on the competition between species-B-catalyzed birth of species A and species-
C-catalyzed death of species A, as well as the exchange-driven growth. The results show that �i� when
exchange-driven aggregation dominates the process, ak�t� satisfies the conventional scaling form; �ii� when
catalyzed birth dominates the process, ak�t� takes the conventional or generalized scaling form; and �iii� when
catalyzed death dominates the process, the aggregate size distribution of species A evolves only according to
some modified scaling forms.
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I. INTRODUCTION

The phenomenon of aggregate growth is popularly stud-
ied and important in a wide variety of fields in nature, such
as physics, chemistry, and biology. For example, aggregation
underlies the evolution of planetary systems in astrophysics
�1�, cloud formation and dust accumulation in atmospheric
sciences �2–4�, as well as polymer and gel formation in
chemical physics �5–9�. The originally studied mechanism is
the pure cluster-cluster aggregation process �10–13�, and re-
search was then steadily extended to aggregation phenomena
with much more complex mechanisms, such as fragmenta-
tion and annihilation, and their various combinations
�14–17�. Aggregation also plays a central role in the theory
of percolation �18�, fractal formation �19�, and network
growth �20–22�.

In recent years, much attention has been devoted to gen-
eralized aggregation phenomena in sociology and economy
to investigate the kinetic behavior of aggregation growth
driven by migration or exchange. Ispolatov, Krapivsky, and
Redner introduced several asset exchange models for the
evolution of wealth distribution in an economically interac-
tion population �23�. Leyvraz and Redner proposed a
migration-driven irreversible aggregate growth model for the
evolution of city populations �24�. In these models, irrevers-
ible growth of aggregates takes place through biased migra-
tion or unbiased exchange mechanisms. The biased migra-
tion mechanism can be described by an irreversible reaction

scheme Ak+Al →
K�k,l�

Ak−1+Al+1 �k� l�, where Ak denotes an ag-
gregate characterized only by its size k �an aggregate con-
taining k units; for example, an aggregate of k units of assets
in asset exchange models or k persons in migration-driven

city population models�. The migration rate kernel K�k , l�
represents the rate of monomer migration from an aggregate
of size k to another aggregate of size l, which generally
depends on the sizes of the two aggregates. In an unbiased
exchange model, an aggregate is equally likely to gain or to
lose a monomer. Ke and Lin investigated the kinetics of a
general unbiased migration-driven aggregation system �25�,
and Lin and Ke further generalized the research to exchange-
driven aggregation with birth and death to mimic the evolu-
tions of city populations and individual wealth �26�. Ben-
Naim and Krapivsky made a general study of exchange-
driven growth with a product and a generalized
homogeneous rate kernel �27�. These migration or exchange-
driven aggregation processes exhibit much more abundant
kinetic behaviors than those in the single-aggregation, anni-
hilation, fragmentation processes or their various combina-
tions. Ke and Lin and co-workers also generalized the study
to the kinetics of migration-driven aggregate growth on com-
pletely connected scale-free networks �28�. The results show
that the evolution behavior of the aggregate size distribution
is drastically different from that for the corresponding system
in normal space.

In an aggregate growth system of more than one species,
there may exist interactions between two aggregates of dif-
ferent species. Recently, considerable interest has been
aroused in a variety of catalysis-driven aggregation mecha-
nisms �29,30�. Lin and Ke and co-workers studied the mutu-
ally catalyzed birth of population and assets in exchange-
driven growth to investigate the interaction between the
population and the asset aggregates �31�. The competition
between the two growth mechanisms, exchange and cata-
lyzed birth, gives rise to much more abundant kinetic behav-
ior. Here it is noticed that catalyzed death may play an im-
portant role, as well as the catalyzed birth process in the
evolutions of city population, wealth distribution, and other
natural and social aggregation growths. The study of the
competition between the catalyzed birth and catalyzed death
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processes in exchange-driven aggregation not only has theo-
retical interest, but also can give a more realistic description
for the kinetic evolution of natural or social systems. For
example, the employee number of a company grows by at-
tracting employees from other companies in the same indus-
try or decreases due to the reverse process, which can be
regarded as exchange-driven growth. Meanwhile, a company
may hire novices to enlarge its production scale, provided
that more and more agencies join in supplying its products,
and the market share of its products thus increases continu-
ously. This can be regarded as a catalyzed birth process with
the help of product agencies. On the contrary, a company
might also have to fire its employees as so to reduce its
production scale if a new industry develops an alternative
product of high quality to continuously invade and occupy
the market, which can be modeled as a catalyzed death pro-
cess caused by the existence of other companies in a differ-
ent industry. Additionally, exchange-driven aggregate growth
with competition between catalyzed birth and catalyzed
death processes also occurs in many chemical systems. Mo-
tivated by these processes, with the growth or reduction in
the sizes of the aggregates driven by other aggregates �espe-
cially aggregates of other species�, we propose an exchange-
driven aggregation model with competition between cata-
lyzed birth and catalyzed death processes, which is believed
to provide a fairly useful description of the dynamics of
some physical �biological, chemical, and social� systems.

In our model, there are three distinct species of aggregates
in the system, A, B, and C aggregates. Exchange-driven ag-
gregation occurs between any two aggregates of the same
species, and, meanwhile, an aggregate of species A gains a
new monomer catalyzed by an aggregate of species B or
loses a member catalyzed by species C. By discussing their
evolution behaviors, we found that the aggregate size distri-
bution of species A �the concentration of the aggregate Ak,
ak�t�� depends crucially on the competition between cata-
lyzed birth and catalyzed death, as well as the exchange-
driven growth. It obeys a conventional or generalized scaling
law when the exchange-driven aggregation or the catalyzed
birth dominates the process, while the aggregate size distri-
bution evolves only according to modified scaling forms
when the catalyzed death dominates the process.

The rest of this paper is organized as follows. In Sec. II,
we introduce model of exchange-driven aggregation growth
with competition between the catalyzed birth and catalyzed
death processes, and describe the outline of the generalized
Smoluchowski’s rate equation approach to study the kinetic
evolution behaviors of the aggregate size distributions. In
Sec. III, we study the kinetics of the system in various cases
with different dependences of catalyzed birth and catalyzed
death rates of species A on the catalyst sizes. Finally, a brief
summary is given in Sec. IV.

II. MODEL OF EXCHANGE-DRIVEN AGGREGATE
GROWTH WITH COMPETITION BETWEEN CATALYZED

BIRTH AND CATALYZED DEATH

In our model, the exchange-driven growth schemes of

species A, B, and C are Ak+Aj →
K1�k,j�

Ak−1+Aj+1, Bk+Bj

→
K2�k,j�

Bk−1+Bj+1, and Ck+Cj →
K3�k,j�

Ck−1+Cj+1, respectively, with
the migration rate kernels K1�k , j�, K2�k , j�, and K3�k , j�. The
reaction of monomer birth of species A catalyzed by species

B is Ak+Bj →
I�k,j�

Ak+1+Bj, with the catalyzed birth rate kernel
I�k , j�, and the reaction of monomer death of species A cata-

lyzed by species C is Ak+Cj →
J�k,j�

Ak−1+Cj, with the catalyzed
death rate kernel J�k , j�.

In general, the rate kernels of exchange and catalyzed
birth or death are dependent on the reactant aggregate sizes.
Here, for convenience of solving the rate equations, we focus
on the typical symmetrical exchange kernels K1�k , j�=K1kj,
K2�k , j�=K2kj, and K3�k , j�=K3kj, which are proportional to
the sizes of aggregates migrating out and accepting one
monomer �K1, K2, and K3 are different proportionality con-
stants�. The rate kernel of species-B-catalyzed birth of spe-
cies A is assumed to be I�k , j�= Ikjv, and that of species-
C-catalyzed death is assumed to be J�k , j�=Jkjv, where I and
J are also proportionality constants, and v is a parameter
reflecting the dependence of the catalyzed birth and death
rates on the catalyst aggregate size.

In this paper, we assume that the system has spatial ho-
mogeneity, so that the fluctuations in the densities of the
reactants are ignored and the aggregates of each species are
considered to be homogeneously distributed in space
throughout the whole process. Thus, the theoretical approach
to investigating the kinetics of the aggregation process can
be based on the rate equations in the mean-field frame, which
assumes that the reaction proceeds at a rate proportional to
the reactant concentrations. We generalize the rate equation
of the exchange- or migration-driven aggregation process
�23,24� and write the corresponding rate equations for our
system as follows:

dak

dt
= K1�k + 1�ak+1�

j=1

�

jaj + K1�k − 1�ak−1�
j=1

�

jaj

− 2K1kak�
j=1

�

jaj + I�k − 1�ak−1�
j=1

�

jvbj − Ikak�
j=1

�

jvbj

+ J�k + 1�ak+1�
j=1

�

jvcj − Jkak�
j=1

�

jvcj , �1�

dbk

dt
= K2�k + 1�bk+1�

j=1

�

jbj + K2�k − 1�bk−1�
j=1

�

jbj

− 2K2kbk�
j=1

�

jbj , �2�

dck

dt
= K3�k + 1�ck+1�

j=1

�

jcj + K3�k − 1�ck−1�
j=1

�

jcj

− 2K3kck�
j=1

�

jcj , �3�

where bk�t� and ck�t� are the concentrations of the aggregates
Bk and Ck, respectively.
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In Eq. �1�, the first two terms account for the gain in ak�t�

due to the migrations Ak+1+Al →
K�k+1,l�

Ak+Al+1 and Ak−1+Al

→
K�l,k−1�

Ak+Al−1 �l=1,2 , . . . �, while their equiprobable reaction

channels Ak+1+Al →
K�l,k+1�

Ak+2+Al−1 and Ak−1+Al →
K�k−1,l�

Ak−2
+Al+1 give rise to gains in ak+2�t� and ak−2�t�, which are
accounted for in the rate equations dak+2 /dt and dak−2 /dt,
respectively. The third term accounts for the loss in ak�t� due

to the migration Ak+Al →
K�k,l�

Ak−1+Al+1 and its equiprobable

process Ak+Al →
K�l,k�

Ak+1+Al−1. The fourth and fifth terms ac-
count, respectively, for the gain and loss in ak�t� due to
species-B-catalyzed birth of species A, and the sixth and sev-
enth terms account, respectively, for the gain and loss in ak�t�
due to species-C-catalyzed death of species A.

For a1�t�, the rate equation �1� has not the second and
fourth terms of the equation for ak�t� �k=2,3 , . . . �, because
there is no empty aggregate A0, and similarly for b1�t� and
c1�t�. However, the rate equation of each species can be writ-
ten in the above-mentioned corresponding uniform form for
all k�1 if the boundary condition �a0�t�=0, b0�t�=0, and
c0�t�=0� is imposed.

The vth moment of the aggregate size distribution ak�t� of
species A can be expressed as Mv

A�t�=� j=1
� jvaj�t�. In particu-

lar, M0
A�t�=� j=1

� aj�t� and M1
A�t�=� j=1

� jaj�t� are the total num-
ber and the total mass of species A aggregates, respectively.
That is the same for the species B and C.

Using the expression for the moments of the aggregate
size distributions, the above equations �1�–�3� can be rewrit-
ten in the following forms:

dak

dt
= �K1�k + 1�ak+1 + K1�k − 1�ak−1 − 2K1kak�M1

A

+ �I�k − 1�ak−1 − Ikak�Mv
B + �J�k + 1�ak+1 − Jkak�Mv

C,

�4�

dbk

dt
= �K2�k + 1�bk+1 + K2�k − 1�bk−1 − 2K2kbk�M1

B, �5�

dck

dt
= �K3�k + 1�ck+1 + K3�k − 1�ck−1 − 2K3kck�M1

C. �6�

Several methods have been developed to solve the rate
equations in different aggregation processes. For the simple

coagulation process Ai+Aj →
K�i,j�

Ai+j, explicit solutions were
obtained by introducing some suitable generating functions
�7–9�. In aggregation-annihilation processes, the rate equa-
tions were solved with the help of a special Ansatz ak�t�
=A�t��a�t��k−1, and by the generating function method as
well �15�. In exchange-driven aggregation processes, the rate
equations were solved through making some scaling Ansätze
directly �23,24� or with the help of the special Ansatz ak�t�
=A�t��a�t��k−1 �25,26�. Recently, Lin et al. gave a thorough
discussion of the applicability of this Ansatz �31�. Here we
find that our current rate equations �4�–�6� can be solved

with the help of the Ansatz

ak�t� = A�t��a�t��k−1, bk�t� = B�t��b�t��k−1,

ck�t� = C�t��c�t��k−1. �7�

In a previous study of the mutually catalyzed birth of
population and assets in exchange-driven growth �31�, the
species-B aggregates perform the exchange-driven aggrega-
tion process and the monomer birth process under the cataly-
sis of species A; while in this exchange-driven aggregation
model, the species-B and -C aggregates perform only the
exchange-driven growth processes, namely, the species-
A-catalyzed birth rates of both species-B and -C aggregates
are equal to zero, so their evolution kinetic behaviors are
simpler. Under the monodisperse initial condition bk�0�
=B0�k1 and ck�0�=C0�k1 �B0 and C0 are the initial aggregate
concentrations of species B and C, respectively�, the accurate
solution to the aggregate size distribution of species B �simi-
larly for species C� is �31�,

bk�t� = B0�1 + K2B0t�−2�1 − �1 + K2B0t�−1�k−1. �8�

In the region of t�1 and k�1, Eq. �8� can be asymptotically
rewritten as

bk�t� � K2
−2B0

−1t−2 exp�− k�K2B0t�−1� . �9�

It satisfies the conventional scaling law in the long-time limit
�15�,

ak�t� � t−w��k/S�t��, S�t� � tz, �10�

with the scaling function ��x�=exp�−x�. SB�t�=K2B0t is the
characteristic size of B aggregates, which plays a role analo-
gous to the correlation length in critical phenomena. More-
over, the total number and total mass of B aggregates are
derived as

M0
B�t� = B0�1 + K2B0t�−1 � K2

−1t−1, M1
B�t� = B0. �11�

Thus, the total number decays linearly with time as t−1, and
the total mass is conserved.

We now focus on the evolution behavior of species A
through solving the rate equation �4� under the monodisperse
initial condition ak�0�=A0�k1, where A0 is the initial aggre-
gate concentrations of species A. With the Ansatz �7�, the
first two moments of species A can be written as M0

A�t�
=� j=1

� aj�t�=A�t� / �1−a�t�� and M1
A�t�=� j=1

� jaj�t�=A�t� /
�1−a�t��2, with the relation M0

A�t�=M1
A�t��1−a�t��. Substitut-

ing the Ansatz �7� into the rate equation �4�, it can be trans-
formed into the following differential equations:

1

1 − a

da

dt
= K1M0

A + IMv
B − JMv

Ca , �12�

1

A

dA

dt
= − 2K1M0

A − IMv
B + JMv

C�2a − 1� . �13�

The monodisperse initial condition is transformed corre-
spondingly as follows:
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a�0� = 0, A�0� = A0 at t = 0. �14�

First, we derive the relation between A�t� and a�t� from Eqs.
�12� and �13� as

A�t� = A0�1 − a�t��2EB�t�EC
−1�t� , �15�

with the shorthand notations EB�t�=exp�I�0
t Mv

B�t��dt�� and
EC�t�=exp�J�0

t Mv
C�t��dt��.

Substituting Eq. �15� into Eq. �12�, it can be rewritten as

d�1 − a�
dt

= − �K1A0EBEC
−1 + JMv

C��1 − a�2

+ �JMv
C − IMv

B��1 − a� . �16�

This Bernoulli equation can be solved under the initial con-
dition �14� to yield

a�t� = 1 −
EB

−1�t�EC�t�

1 + K1A0t + �
0

t

EB
−1�t��dEC�t��

. �17�

Thus, the problem is reduced to deriving an explicit expres-
sion for a�t� from Eq. �17�. In the next section, we study the
kinetics of the system in various cases with different cata-
lyzed birth and death rate kernel parameters v, reflecting the
dependence of the catalyzed birth and death rates on the
catalyst aggregate size.

III. KINETICS OF EXCHANGE-DRIVEN AGGREGATION
GROWTH WITH COMPETITION BETWEEN

CATALYZED BIRTH AND CATALYZED DEATH

A. The case of v=0

We first study the relatively simple case of v=0, a case
where the catalyzed birth and death rate kernels I�k , j�= Ik
and J�k , j�=Jk are both independent of the catalyst aggregate
size.

In this case, we can obtain an asymptotical explicit ex-
pression for a�t� in the long-time limit. From Eq. �11�, we
have M0

B�t�=B0�1+K2B0t�−1 and M0
C�t�=C0�1+K3C0t�−1;

then we obtain EB�t�= �1+K2B0t�I/K2 and EC�t�= �1
+K3C0t�J/K3. Substituting these solutions into Eq. �17�, we
derive the analytic solution for a�t� in the following several
subcases.

In the subcase of JK3
−1− IK2

−1	1, from Eq. �17� we derive
the following asymptotic solution in the long-time limit:

a�t� � 1 − �C1K1A0�−1t−1−IK2
−1+JK3

−1
, �18�

where C1= �K2B0�IK2
−1

�K3C0�−JK3
−1

. We further derive the
asymptotic solution of A�t� from Eq. �15�,

A�t� � C1
−1K1

−2A0
−1t−2−IK2

−1+JK3
−1

. �19�

Thus, the aggregate size distribution of species A in the long-
time limit is derived as

ak�t� � C1
−1K1

−2A0
−1t−2−�IK2

−1−JK3
−1� exp�− x�, x = k/SA�t� ,

�20�

with the characteristic aggregate size SA�t�
=C1K1A0t1+�IK2

−1−JK3
−1�. This shows that the aggregate size dis-

tribution ak�t� satisfies the conventional scaling form �10�,
with the scaling function ��x�=exp�−x�. The scaling expo-
nents w=2+ IK2

−1−JK3
−1 and z=1+ IK2

−1−JK3
−1 are dependent

on the rate kernels of the self-exchange of species B and C,
as well as on the rate kernels of the catalyzed birth and death
reactions, but they are independent of the self-exchange of
species A itself. More precisely, the kinetic evolution behav-
ior of species A is dominated by the value IK2

−1−JK3
−1, which

reflects the competition between the species-B-catalyzed
birth rate scaled by the rate of self-exchange of species B and
the species-C-catalyzed death rate scaled by the rate of self-
exchange of species C. This suggests that when both species
B and C perform self-exchange processes, the effective
species-B-catalyzed birth rate is Ie= IK2

−1 and the effective
species-C-catalyzed death rate is Je=JK3

−1.
Moreover, the total number of species A is derived as

follows:

M0
A�t� = A�t��1 − a�t��−1 � K1

−1t−1, �21�

which decays with time as t−1. The total mass of species A is

M1
A�t� = A�t��1 − a�t��−2 = A0EB�t�EC

−1�t� � C1A0tIK2
−1−JK3

−1
.

�22�

Obviously, the evolution of the total mass M1
A�t� is crucially

dominated by the competition between the effective cata-
lyzed birth and the effective catalyzed death. For the Ie
Je
case, the catalyzed birth dominates the process and M1

A�t�
increases with time, while in the Ie	Je case, the catalyzed
death dominates the process and M1

A�t� decreases with time.
In the marginal case of Ie=Je, the catalyzed birth and death
processes play the same roles and counteract each other, and
M1

A�t� is conserved.
In the subcase of JK3

−1− IK2
−1=1, we obtain the following

asymptotic solution for K2B0�K3C0:

a�t� � 1 − C2 − C3t−1 ln t , �23�

where C2= �K1A0C1+JK3
−1�−1 and C3= IJK2

−1K3
−1C2

2�K2
−1B0

−1

−K3
−1C0

−1�. For K2B0=K3C0, one can easily derive the exact
solution of a�t� from Eq. �16�,

a�t� =
�K1A0 + JC0 − K2B0�t

1 + �K1A0 + JC0�t
, �24�

which reduces to the following asymptotic solution at large
times: a�t��1−C2− �1−C2��K1A0+JC0�−1t−1. Substituting
Eqs. �23� and �24� into Eq. �15�, respectively, we can obtain
the same expression for A�t� as follows:

A�t� � A0C1C2
2t−1. �25�

Thus we obtain the large-time asymptotic solution of the
aggregate size distribution
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ak�t� � 	A0C1C2
2�1 − C2�kt−1 exp�− kC3�1 − C2�−1t−1 ln t� for K2B0 � K3C0,

A0C1C2
2�1 − C2�kt−1 exp�− k�K1A0 + JC0�−1t−1� for K2B0 = K3C0.


 �26�

Equation �26� shows that the usual scaling form �10� breaks
down for this case and the aggregate size distribution satis-
fies the modified scaling form �15�,

ak�t� � �kt−w��k/S�t��, S�t� � tz. �27�

It is well known that the usual scaling form has only one
scale S�t�. Equation �27� shows that the modified scaling
form comprises two scales, the growing scale S�t� and the
time-independent scale S=limt→��kk

2ak�t� /�kkak�t�=1/ �1
−��. The growing scale denotes the evolution of the aggre-
gates driven by the exchange and catalyzed birth and death
processes, while the time-independent scale dominates the
kinetic behavior of the system in the long-time limit. For this
subcase, the growing scale is S�t�= �1−C2�C3

−1t�ln t�−1 for
K2B0�K3C0 and S�t�= �K1A0+JC0�t for K2B0=K3C0, while
the time-independent scale is S=C1K1A0+JK3

−1.
Moreover, we derive, respectively, the asymptotic solu-

tions for the total number and the total mass of species A,

M0
A�t� � A0C1C2t−1, M1

A�t� � A0C1t−1. �28�

So both the total number and the total mass of species A
decay with time as t−1, which is independent of the details of
the rate kernels.

In the subcase of JK3
−1− IK2

−1
1, the evolution behavior
of the aggregate size distribution further depends on the re-
lation between �J−K3�K2

2B0 and IK3
2C0. When �J−K3�K2

2B0

� IK3
2C0, from Eq. �17� we determine the following

asymptotic solution for a�t� in the long-time limit:

a�t� � 	1 − C4 + C5t−JK3
−1+IK2

−1+1 for JK3
−1 − IK2

−1 	 2,

1 − C4 + C6t−1 for JK3
−1 − IK2

−1 � 2,


�29�

where C4=1− IK3 /JK2, C5=K1A0C1C4
2, C6=C5+C7 for

JK3
−1− IK2

−1=2 or C6=C7�JK3
−1− IK2

−1−1�−1 for JK3
−1− IK2

−1


2, and C7=JK3
−1��J−K3�K3

−2C0
−1− IK2

−2B0
−1�C4

2. By making
use of Eq. �29� we deduce the explicit solution for A�t� from
Eq. �15�,

A�t� � A0C1C4
2t−1. �30�

Then we obtain the scaling solution of the aggregate size
distribution,

ak�t� � 	A0C1C4
2�1 − C4�kt−1 exp�kC5�1 − C4�−1t−JK3

−1+IK2
−1+1� for JK3

−1 − IK2
−1 	 2,

A0C1C4
2�1 − C4�kt−1 exp�kC6�1 − C4�−1t−1� for JK3

−1 − IK2
−1 � 2,


 �31�

which takes the modified scaling form �27�. For this subcase,

the growing scale is S�t�= �1−C4�C5
−1tJK3

−1−IK2
−1−1 for 1

	JK3
−1− IK2

−1	2 and S�t�= �1−C4�C6
−1t for JK3

−1− IK2
−1�2,

while the time-independent scale is always S=JK2 / �JK2

− IK3�. When �J−K3�K2
2B0= IK3

2C0, the large-time asymptotic
solution for a�t� can be derived as follows:

a�t� � 	1 − C4 + C5t−JK3
−1+IK2

−1+1 for JK3
−1 − IK2

−1 	 3,

1 − C4 + C8t−2 for JK3
−1 − IK2

−1 � 3,


�32�

where C8=C5+C9 for JK3
−1− IK2

−1=3 or C8=C9�JK3
−1− IK2

−1

−2�−1 for JK3
−1− IK2

−1
3 and C9=JK3
−1�I�I+K2�K2

−4B0
−2 /2

+ �J−K3��J−2K3�K3
−4C0

−2 /2− I�J−K3�K2
−2K3

−2B0
−1C0

−1�C4
2. The

solution for A�t� is the same as Eq. �30�. Thus, the scaling
solution of the aggregate size distribution for JK3

−1− IK2
−1

	3 is the same as Eq. �29� for JK3
−1− IK2

−1	2, while that for
JK3

−1− IK2
−1�3 can be written as

ak�t� � A0C1C4
2�1 − C4�kt−1 exp�kC7�1 − C4�−1t−2� ,

�33�

with the growing scale S�t�=C7
−1�1−C4�t2 and the time-

independent scale S=JK2 / �JK2− IK3�. Moreover, the
asymptotic solutions of the total number and the total mass
of species A is obtained as follows:

M0
A�t� � A0C1C4t−�JK3

−1−IK2
−1�, M1

A�t� � A0C1t−�JK3
−1−IK2

−1�.

�34�

The results imply that both the total number and the total

mass of species A decrease as t−�JK3
−1−IK2

−1� in the long-time
limit. So species A will also die out finally in this subcase.

B. The case of v=1

We now discuss the case of v=1, where the catalyzed
birth and death rate kernels I�k , j�= Ikj and J�k , j�=Jkj are
both proportional to the catalyst’s size.
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In this case, the total masses of species B and C are both conserved, M1
B�t�=B0 and M1

C�t�=C0. The expressions for EB�t�
and EC�t� can be directly derived as EB�t�=exp�IB0t� and EC�t�=exp�JC0t�. The solution for a�t� can be exactly derived from
Eq. �17� as

a�t� = �1 −
�IB0 − JC0�e−�IB0−JC0�t

IB0 − JC0 + �IB0 − JC0�K1A0t − JC0e−�IB0−JC0�t for IB0 � JC0,

1 − �K1A0 + JC0�−1t−1 for IB0 = JC0.
� �35�

In the long-time limit, it becomes

a�t� � �1 − �K1A0�−1t−1e−�IB0−JC0�t for IB0 
 JC0,

1 − �K1A0 + JC0�−1t−1 for IB0 = JC0,

IB0�JC0�−1 + K1A0�1 − IB0�JC0�−1�2te−�JC0−IB0�t for IB0 	 JC0.
� �36�

We further derive the asymptotic solution for A�t� from Eq.
�15� as

A�t� � �K1
−2A0

−1t−2e−�IB0−JC0�t for IB0 
 JC0,

A0�K1A0 + JC0�−2t−2 for IB0 = JC0,

A0�1 − IB0�JC0�−1�2e−�JC0−IB0�t for IB0 	 JC0.
�

�37�

�i� When IB0
JC0, the aggregate size distribution of spe-
cies A is obtained in the long-time limit satisfying a gener-
alized scaling form as

ak�t� � K1
−2A0

−1t−2e−�IB0−JC0�t exp�− x�, x = k/SA�t� ,

�38�

with the characteristic size of aggregates SA�t�
=K1A0te�IB0−JC0�t. This generalized scaling expression of the
aggregate size distribution can further be written in a general
form as follows �31�:

ak�t� � K1
−1t−1SA

−1�t���x�, x = k/SA�t� . �39�

The total number and the total mass of species A can be
derived as

M0
A�t� � K1

−1t−1, M1
A�t� � A0e�IB0−JC0�t. �40�

The results imply that the total number of species A still
decays as t−1, while the total mass grows exponentially with
time. This means that catalyzed birth dominates the process.

�ii� For the IB0=JC0 case, the aggregate size distribution
of species A satisfies the conventional scaling form in the
long-time limit,

ak�t� � A0�K1A0 + JC0�−2t−2��x�, x = k/SA�t� , �41�

with the characteristic size SA�t�= �K1A0+JC0�t and the scal-
ing exponents w=2 and z=1.

Moreover, the total number and the total mass of A spe-
cies can be obtained as

M0
A�t� � A0�K1A0 + JC0�−1t−1, M1

A�t� = A0. �42�

The results imply that the total number of species A still
decays with time as t−1, while the total number is conserved

all along. It is just the result of the counteraction of catalyzed
birth and catalyzed death.

�iii� When IB0	JC0, the aggregate size distribution of
species A is obtained in the long-time limit as

ak�t� � A0�1 − IB0�JC0�−1�2�IB0/JC0�ke−�JC0−IB0�t

�exp�k/R�t�� , �43�

with R�t�= IB0JC0�JC0− IB0�−2�K1A0�−1t−1e�JC0−IB0�t. It shows
that, in this case, the aggregate size distribution ak�t� takes
the modified scaling form �27�. Moreover, the total number
and the total mass of species A can be obtained as

M0
A�t� � A0�JC0 − IB0��JC0�−1e−�JC0−IB0�t,

M1
A�t� = A0e−�JC0−IB0�t. �44�

So both the total number M0
A�t� and the total mass M1

A�t�
decrease exponentially. That is, the effect of catalyzed death
is greater than that of catalyzed birth, and species A will die
out in the end.

Contrary to the former v=0 case, the self-exchange pro-
cesses of species B and C play no role in the kinetic behavior
of species A in this case. Meanwhile, the initial concentra-
tions of species B and C, B0 and C0, play important roles in
the evolution of the system. The kinetic behavior of species
A is dominated by the competition between the effective
species-B-catalyzed birth Ie= IB0 and the effective species-
C-catalyzed death Je=JC0.

C. The general v case

In the general v case, we can study the asymptotic kinetic
behavior of species A in the long-time limit.

In the long-time limit, from Eq. �9� the vth moment of the
distribution bk�t� can be determined as
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Mv
B�t� = �

j=1

�

jvbj � ��1 + v�B0�1 + K2B0t�v−1 for v 
 − 1,

�K2t�−1�1 + K2B0t�−1 ln�1 + K2B0t� for v = − 1,

B0�1 + K2B0t�−2��− v� for v 	 − 1,
� �45�

where ��n�=�l=1
� l−n �n
1� is the Riemann zeta function. The vth moment of the distribution ck�t� is

Mv
C�t� = �

j=1

�

jvcj � ��1 + v�C0�1 + K3C0t�v−1 for v 
 − 1,

�K3t�−1�1 + K3C0t�−1 ln�1 + K3C0t� for v = − 1,

C0�1 + K3C0t�−2��− v� for v 	 − 1.
� �46�

�i� In the case of v
0, from Eqs. �45� and �46� we derive

EB�t� � exp�C11t
v� , �47�

EC�t� � exp�C12t
v� , �48�

where C11= I�v�B0
vK2

v−1 and C12=J�v�C0
vK3

v−1.
Using these expressions, we obtain a�t� from Eq. �17�,

a�t� � �1 − �K1A0�−1t−1e−�C11−C12�tv for C11 
 C12,

1 − �K1A0t + C12t
v�−1 for C11 = C12,

C11C12
−1 + �C12C11

−1 − 1�2K1A0te−�C12−C11�tv for C11 	 C12.
� �49�

We further derive the asymptotic solution of A�t� from Eq.
�15�,

A�t� � �K1
−2A0

−1t−2e−�C11−C12�tv for C11 
 C12,

A0�K1A0t + C12t
v�−2 for C11 = C12,

A0�1 − C11C12
−1�2e−�C12−C11�tv for C11 	 C12.

�
�50�

It follows from Eqs. �49� and �50� that the kinetic behavior
of the aggregate size distribution ak�t� depends crucially on
the relationship of C11 and C12, which reflects the competi-
tion between catalyzed birth and catalyzed death. So, in this
general v
0 case, Eqs. �49� and �50� suggest that the effec-
tive rates of species-B-catalyzed birth and species-
C-catalyzed death are Ie=C11= I�v�B0

vK2
v−1 and Je=C12

=J�v�C0
vK3

v−1, respectively.
For the C11
C12 case, in which the catalyzed birth domi-

nates the process, the aggregate size distribution of species A
can be described in the generalized scaling form

ak�t� = K1
−1t−1SA

−1�t�exp�− x�, x = k/SA�t� , �51�

with the characteristic size SA�t�=K1A0te�C11−C12�tv. The total
number and the total mass of species A are obtained as

M0
A�t� � K1

−1t−1, M1
A�t� � A0 exp��C11 − C12�t� . �52�

The results imply that the total number of species A still
decreases as t−1, while the total mass grows exponentially
with time.

For the C11=C12 case, in which the effects of catalyzed
birth and catalyzed death counteract each other, the evolution
behavior of the aggregate size distribution ak�t� is dependent
on the parameter v.

If 0	v	1, the aggregate size distribution of species A
can be expressed in the conventional scaling form

ak�t� � K1
−2A0

−1t−2 exp�− x�, x = k/SA�t� , �53�

with the characteristic size SA�t�=K1A0t. The scaling expo-
nents are w=2 and z=1, which are independent of the value
of the parameter v. The total number and the total mass of
species A are derived as

M0
A�t� � K1

−1t−1, M1
A�t� = A0. �54�

The results indicate that the total number of species A de-
creases with time as t−1, while the total mass is conserved.

On the other hand, if v
1, the aggregate size distribution
of species A also satisfies the conventional scaling form

ak�t� � A0C12
−2t−2v exp�− x�, x = k/SA�t� , �55�

with the characteristic size SA�t�=C12t
v, but the scaling ex-

ponents w=2v, z=v are dependent on the value of the pa-
rameter v. The total number and the total mass of species A
are derived as

M0
A�t� � A0C12

−1t−v, M1
A�t� = A0. �56�

The results indicate that the total number of species A de-
creases with time as t−v, while the total mass is also con-
served.

For the C11	C12 case, which corresponds to the case
where the catalyzed death dominates the process, the aggre-
gate size distribution of species A can be expressed as
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ak�t� � A0�1 − C11C12
−1�2�C11/C12�ke−�C12−C11�tv

�exp�k/R�t�� ,

R�t� = C13�K1A0�−1t−1e�C12−C11�tv, �57�

where C13=C11C12
−1�1−C12C11

−1�−2. It is obvious that, in this
case, the aggregate size distribution ak�t� obeys another
modified scaling form,

ak�t� � �kt−w�R�t��−1��k/R�t�� , �58�

with the scaling function ��x�=exp�x�. Moreover, both the
total number M0

A�t� and the total mass M1
A�t� of species A

decrease stretched-exponentially as exp�−�C12−C11�tv�. So,
in this case, species A will also die out finally.

�ii� In the case of v	0, from Eqs. �17�, �45�, and �46� one
can easily obtain the asymptotical solution of a�t� in the
long-time limit as

a�t� � 1 − C14�K1A0t�−1, �59�

where C14=exp�0
��JMv

C�t�− IMv
B�t��dt�. We further derive

the asymptotic solution for A�t� from Eq. �15� as

A�t� � C14K1
−2A0

−1t−2. �60�

The aggregate size distribution of species A is obtained and
satisfies the conventional scaling form

ak�t� � C14K1
−2A0

−1t−2 exp�− x�, x = k/SA�t� , �61�

with the characteristic size SA�t�=C14
−1K1A0t. The scaling ex-

ponents are w=2, z=1, which are independent of the value of
the parameter v. The total number M0

A�t� and the total mass
M1

A�t� of species A can be obtained as follows:

M0
A�t� � K1

−1t−1, �62�

M1
A�t� � A0 exp��

0

�

�IMv
B�t� − JMv

C�t��dt� .

From Eq. �62� we find that the total number of species A
still decreases with time as t−1, and the evolution of the total
mass M1

A�t� is dominated by the competition between the
catalyzed birth and catalyzed death reactions. When
�0

��IMv
B�t�−JMv

C�t��dt
0, the total mass M1
A�t� grows with

time, which reveals that the influence of catalyzed birth is
greater than that of catalyzed death. When �0

��IMv
B�t�

−JMv
C�t��dt	0, M1

A�t� decreases with time, which shows
that the influence of catalyzed death is greater than that of
catalyzed birth; and when �0

��IMv
B�t�−JMv

C�t��dt=0, M1
A�t� is

conserved, which corresponds to the fact that the effects of
catalyzed birth and catalyzed death counteract each other.

IV. SUMMARY

In summary, we have proposed an exchange-driven
growth model of a three-species system, in which exchange-
driven aggregation occurs between any two clusters of the
same species and, meanwhile, monomer birth and monomer
death of species A occur due to catalysis by species B and C,
respectively. Based on the mean-field rate equations, we ana-
lyzed the kinetic scaling behavior of the aggregate size dis-
tributions in the systems with the catalysis birth �death� rate
kernels I�i , j�= Iijv �J�i , j�=Jijv�. The kinetics of the systems
are found to depend crucially on the value of v, as illustrated
in Table I.

From Table I, we can draw the following conclusions. In
the v	0 case, where the effects of catalyzed birth and cata-
lyzed death are rather weak and the exchange-driven aggre-
gation dominates the process, the aggregate size distribution
ak�t� obeys the conventional scaling law. As the value of v
increases, the effects of catalyzed birth and catalyzed death
get larger, and when catalyzed birth dominates the process
�IK2

−1−JK3
−1
−1 in the v=0 case and IB0

vK2
v−1
JC0

vK3
v−1 in

the v
0 case�, ak�t� follows the conventional or generalized
scaling law. On the other hand, when catalyzed death domi-
nates the process �IK2

−1−JK3
−1�−1 in the v=0 case and

IB0
vK2

v−1	JC0
vK3

v−1 in the v
0 case�, ak�t� scales according
to some modified scaling laws, that is, the catalyzed death
mechanism causes a breakdown of the conventional or gen-
eralized scaling behavior. In the marginal case when the ef-
fects of catalyzed birth and catalyzed death counteract each
other in the v
0 case �IB0

vK2
v−1=JC0

vK3
v−1�, exchange-driven

aggregation dominates the process and ak�t� follows the con-
ventional law, but it does not belong to the same universality
class as the pure exchange-driven aggregation process.

Indeed, the competition between the catalyzed birth and
death processes in exchange-driven aggregation gives rise to
surprisingly rich kinetic behavior.
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TABLE I. Form of the aggregate size distribution of species
A.

v Scaling behavior of ak�t�
v	0 Conventional scaling form

v=0 Conventional scaling form �JK3
−1− IK2

−1	1�
Modified scaling behavior �JK3

−1− IK2
−1�−1�

v
0 Generalized scaling form �IB0
vK2

v−1
JC0
vK3

v−1�
Conventional scaling from �IB0

vK2
v−1=JC0

vK3
v−1�

Modified scaling behavior �IB0
vK2

v−1	JC0
vK3

v−1�
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